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Chapter 1

An Interesting Property Of
Quadratic Polynomial

• Some important Lemmas

• Related Examples

• pqr method

• Related Problems & Hints
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1.1 Lemmas

(Lemma 1)
Consider quadratic polynomial f (x) = x2 +bx+ c where b,c are real numbers. Then
f (x)≥ 0 holds for all x≥ 0 if and only if b2 ≤ 4c, or b2 > 4c and b, c≥ 0.

Proof. If b2 ≤ 4c then the inequality is trivial. If b2 > 4c, then f (x) must have two real
roots x1 < x2 such that

x1 + x2 =−b, x1x2 = c.

So f (x)≥ 0, ∀x≥ 0 if and only if x1 < x2 ≤ 0 and then b, c≥ 0, as desired.

(Lemma 2)
Consider quadratic polynomial f (x) = ax2 +bx+ c where a,b,c are real numbers and a > 0.
Then f (x)≥ 0 holds for all x≥ 0 if and only if b2 ≤ 4ac, or b2 > 4ac and b, c≥ 0.

Proof. It’s corollary of lemma 1 if we replace (b,c)→
(b

a ,
c
a

)
.

(Lemma 3)
Consider quadratic polynomial f (x) = ax2−bx+ c where a,b,c are real numbers and a > 0.
Let p≤ q be real numbers, then f (x)≥ 0 holds for all x ∈ [p;q] if and only if b2 ≤ 4ac, or

b2 > 4ac,
ap2−bp+ c≥ 0,
b≤ 2ap

or


b2 > 4ac,
aq2−bq+ c≥ 0,
b≥ 2aq
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1.2 Examples

Example 1.2.1 (Vasile Cirtoaje). Let a,b,c be real numbers such that abc≥ 0. Prove that

a2 +b2 + c2 +2abc+4≥ 2(a+b+ c)+ab+bc+ ca.

Proof. We can assume that (b−1)(c−1)≥ 0. The inequality is

f (a) = a2 +(2bc−b− c−2)+b2−bc+ c2−2(b+ c)+4≥ 0.

We have

∆a = (2bc−b− c−2)2−4
[
b2−bc+ c2−2(b+ c)+4

]
= 4(bc−3)(b−1)(c−1)−3(b− c)2 .

If ∆a ≤ 0 then the inequality is proved. If ∆a > 0 then bc > 3 and a ≥ 0 as abc ≥ 0.
Applying the first lemma, we need to prove

2bc−b− c−2≥ 0, b2−bc+ c2−2(b+ c)+4≥ 0.

Indeed

b2−bc+ c2−2(b+ c)+4≥ (b+ c)2

4
−2(b+ c)+4 =

(
b+ c

2
−2
)2

≥ 0.

Assume 2bc−b− c−2 < 0, then since ∆a > 0 we get

b+c+2−2bc> 2
√

b2−bc+ c2−2(b+ c)+4≥ 2
(

b+ c
2
−2
)
=⇒ 2bc< 6⇐⇒ bc< 3,

which contradicts. Hence 2bc−b− c−2≥ 0, as desired.

Example 1.2.2 (Vasile Cirtoaje). Let a,b,c≥ 0 and 0≤ k ≤
√

2. Prove that

a2 +b2 + c2 + kabc+2k+3≥ (k+2)(a+b+ c) .

Proof. The inequality is linear function of k. So it’s enough to prove when k ∈
{

0;
√

2
}
.

If k = 0, it becomes
(a−1)2 +(b−1)2 +(c−1)2 ≥ 0.

Let’s see the case k =
√

2. It can be written as

f (a) = a2 +
(

bc
√

2−2−
√

2
)
+b2 + c2 +2

√
2+3−

(
2+
√

2
)
(b+ c)≥ 0.

Suppose (b−1)(c−1)≥ 0 and consider the case ∆a > 0 (for example, b = c = 2), which
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is (
bc
√

2−2−
√

2
)2

> 4
[
b2 + c2 +2

√
2+3−

(
2+
√

2
)
(b+ c)

]
.

We have

b2 + c2 +2
√

2+3−
(

2+
√

2
)
(b+ c)≥ (b+ c)2

2
+2
√

2+3−
(

2+
√

2
)
(b+ c)

=

(
b+ c√

2
−
√

2−1
)2

≥ 0.

and the rest is bc
√

2−2−
√

2≥ 0. Assume bc
√

2−2−
√

2 < 0, then

2+
√

2−bc
√

2 > 2
√

b2 + c2 +2
√

2+3−
(

2+
√

2
)
(b+ c)≥ 2

√(
b+ c√

2
−
√

2−1
)2

≥ 2
(√

2+1− b+ c√
2

)
.

This leads to √
2(b+ c)≥

√
2bc+

√
2⇔
√

2(b−1)(c−1)< 0,

which is a contradiction. Hence bc
√

2−2−
√

2≥ 0, as desired.

Example 1.2.3 (Tran Nam Dung). Find the smallest real number k such that

abc+2+ k
[
(a−1)2 +(b−1)2 +(c−1)2

]
≥ a+b+ c

holds for all a,b,c≥ 0.

Proof [Hint]. Choose c = 0 and a = b = 1+ 1√
2
to get k ≥ 1√

2
.

Example 1.2.4. Let a,b,c > 0. Prove that

(a+b+ c−3)
(

1
a
+

1
b
+

1
c
−3
)
+abc+

1
abc
≥ 2.

Proof. Multiply both sides by abc and write it as

f (a)=
(
b2c2 +b+ c−3bc

)
a2+

[
b2 +10bc+ c2−3(bc+1)(b+ c)

]
a+bc(b+ c)−3bc+1≥ 0.

By the AM - GM inequality

b2c2 +b+ c−3bc≥ b2c2 +2
√

bc−3bc =
√

bc
(√

bc−1
)2(√

bc+2
)
≥ 0,

bc(b+ c)−3bc+1≥ 2bc
√

bc−3bc+1 =
(√

bc−1
)2(

2
√

bc+1
)
≥ 0.
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Notice that b2c2 + b+ c− 3bc = 0⇔ b = c = 1 and then inequality becomes equality.
Otherwise, we calculate

∆a =
[
b2 +10bc+ c2−3(bc+1)(b+ c)

]2−4
(
b2c2 +b+ c−3bc

)
[bc(b+ c)−3bc+1]

= (b−1)2 (c−1)2 [b2 +14bc+ c2−4(bc+1)(b+ c)
]
.

In the case ∆a > 0 we get

b2 +14bc+ c2 > 4(bc+1)(b+ c) ,

and because (bc+1)(b+ c)≥ 4bc (it’s just AM - GM), we obtain

b2 +10bc+ c2 > 3(bc+1)(b+ c) ,

this is what we want.
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1.3 The pqr method

This method has become quite popular. The idea is that when solving three-variable inequal-
ities, we set p = a+b+ c, q = ab+bc+ ca and r = abc. The following result is important.

p
(
9q−2p2)−2

√
(p2−3q)3

27
≤ r ≤

p
(
9q−2p2)+2

√
(p2−3q)3

27
.

This follows from

(a−b)2 (b− c)2 (c−a)2 = p2q2−4q3 +
(
18pq−4p3)r−27r2 ≥ 0

Let’s see its application in the following problem.

Example 1.3.1 (Do Xuan Trong). Let a,b,c be real numbers and no two of which are equal.
Prove that

1

(a−b)2 +
1

(b− c)2 +
1

(c−a)2 ≥
4(ab+bc+ ca)

a2b2 +b2c2 + c2a2 .

Proof. If ab+ bc+ ca ≤ 0 then the inequality is clear. If ab+ bc+ ca > 0, let p =
a+b+ c = 1, q = ab+bc+ ca and r = abc. We have a2b2 +b2c2 + c2a2 = q2−2r and

1

(a−b)2 +
1

(b− c)2 +
1

(c−a)2 =

(
1

a−b
+

1
b− c

+
1

c−a

)2

=

(
a2 +b2 + c2−ab−bc− ca

)2

(a−b)2 (b− c)2 (c−a)2

=
(1−3q)2

q2−4q3 +(18q−4)r−27r2 .

The inequality is
(1−3q)2

q2−4q3 +(18q−4)r−27r2 ≥
4q

q2−2r
,

which is
f (r) = 108qr2−2(9q−1)(5q−1)r+q2 (5q−1)2 ≥ 0.

Since 108q > 0, we calculte

∆
′
r = (9q−1)2 (5q−1)2−108q3 (5q−1)2

= (5q−1)2 (3q−1)2 (1−12q) .

If q≥ 1
12 , we have Q.E.D. If q < 1

12 , since

9q−2−2
√

(1−3q)3

27
= r1 ≤ r ≤ r2 =

9q−2+2
√
(1−3q)3

27
,

and the lemma 3, we will show{
f (r2)≥ 0,
2(9q−1)(5q−1)≥ 2 ·108q · r2

⇔

 f (r2)≥ 0,

(9q−1)(5q−1)≥ 4q
[

9q−2+2
√
(1−3q)3

]
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The condition f (r2) ≥ 0 is equivalent to prove f (r) ≥ 0 when two numbers are equal,
and this is true. The second condition is equivalent to

q <

√
265−3
128

,

this is true because
√

265−3
128 > 1

12 .

Example 1.3.2. Let x,y and z be positive numbers such that x3+y3+ z3+xyz = 4 Prove that:

x2 + y2

x+ y
+

y2 + z2

y+ z
+

z2 + x2

z+ x
≥ 3

Proof. Write inequality as

x2 + y2

x+ y
+

y2 + z2

y+ z
+

z2 + x2

z+ x
> 3

3

√
x3 + y3 + z3 + xyz

4

Suppose p = x+ y+ z = 3,q = xy+ yz+ zx = 3− 3t2(0 6 t < 1) and r = abc inequality
become

2p2q−4pr−2q2

pq− r
> 3

3

√
p3−3pq+4r

4

equivalent to
36−12r−18t2 (t2 +1

)
9(1− t2)− r

> 3 3

√
r+

27
4

t2

Or

4−
6
(
1− t2)(4− t2)
9(1− t2)− r

> 3

√
r+

27
4

t2

Because r 6 (1+2t)(1− t)2, so

4−
6
(
1− t2)(4− t2)
9(1− t2)− r

> 4−
6
(
1− t2)(4− t2)

9(1− t2)− (1+2t)(1− t)2 =
3t2 + t +2

t +2

and
r+

27
4

t2 6 (1+2t)(1− t)2 +
27
4

t2 = 2t3 +
15
4

t2 +1

Therefore we need to show that

3t2 + t +2
t +2

> 3

√
2t3 +

15
4

t2 +1

Which is true because(
3t2 + t +2

t +2

)3

−
(

2t3 +
15
4

t2 +1
)
=

(
4t2 +5t +6

)
(5t−2)2t2

4(t +2)3 > 0
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Example 1.3.3 (Do Xuan Trong). Let a,b,c≥ 0. Prove that

2
√

2(a−b)(b− c)(c−a)≤ a4 +b4 + c4

a+b+ c
−

3abc
(
a2 +b2 + c2)

(a+b+ c)2 .

Proof. Let p = a+ b+ c = 1, q = ab+ bc+ ca and r = abc. Because the right hand
side is non-negative, we consider the case a≤ b≤ c. Hence

(a−b)(b− c)(c−a) =
√

q2−4q3 +(18q−4)r−27r2.

We have

a4 +b4 + c4

a+b+ c
−

3abc
(
a2 +b2 + c2)

(a+b+ c)2 = 2q2−4q+1+(6q+1)r.

So the inequality becomes(
2q2−4q+1+(6q+1)r

)2 ≥ 8
[
q2−4q3 +(18q−4)r−27r2] ,

⇔ f (r) =
(
36q2 +12q+217

)
r2 +2

(
12q3−22q2−70q+17

)
r+
(
2q2 +4q−1

)2 ≥ 0.

We see

∆
′
r =
(
12q3−22q2−70q+17

)2−
(
36q2 +12q+217

)(
2q2 +4q−1

)2

=−8(3q−1)2 (16q3 +48q2 +28q−9
)

In the cases 16q3 + 48q2 + 28q− 9 < 0 we have (using calculator) q < 0.226683. But
then 12q3−22q2−70q+17 > 0 (because this is q < 0.22849 (note that 0 < q < 3)). So
the inequality is proved.

This result is equivalent to

a4 +b4 + c4−
3
(
a2 +b2 + c2)abc

a+b+ c
≥ 2
√

2
∣∣a3b+b3c+ c3a−ab3−bc3− ca3∣∣ .

This is stronger than the problem made by Pham Kim Hung

a4 +b4 + c4−abc(a+b+ c)≥ 2
√

2
∣∣a3b+b3c+ c3a−ab3−bc3− ca3∣∣ .

We can use that result to prove (also created by me)

a4 +b4

a+b
+

b4 + c4

b+ c
+

c4 +a4

c+a
≥ a3 +b3 + c3 +2

√
2(a−b)(b− c)(c−a) .
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1.4 Problems

Problem 1.4.1 (Do Xuan Trong). Let a,b,c≥ 0. Prove that

a2 +b2

a+b
+

b2 + c2

b+ c
+

c2 +a2

c+a
≥ a+b+ c+

4 |(a−b)(b− c)(c−a)|
a2 +b2 + c2 .

Hint. Make a lemma the same as example 7.

Problem 1.4.2. Let a,b,c > 0. Prove that

(a+b+ c−3)(ab+bc+ ca−3)≥ 3(abc−1)(a+b+ c−ab−bc− ca) .

Hint. Check the cases c = 0 and b = c.

Problem 1.4.3 (Do Xuan Trong). Let a,b,c≥ 0. Prove that

14abc+3
(
a2b2 +b2c2 + c2a2)−8(ab+bc+ ca)+2(a+b+ c)+1≥ 0.

Hint. Check the cases c = 0 and b = c.
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