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Chapter 1

The pqr Method

1.1 Introduction

If there is a 50-50 chance that something can go wrong, then 9 times out of ten it will. -
Paul Harvey

1.1.1 The Basics of the Basics

The pqr/uvw method is a useful technique for proving inequalities involving symmetric poly-
nomials in three real non-negative variables. This method is highly related with Schur’s
inequality. These types of problems are common in math Olympiads. The basic idea is to
introduce a specific change of variables that simplifies the original inequality. Every symmetric
polynomial in a,b,c (or x,y,z) can be written as a polynomial in p,q,r or u,v2,w3.

The method is mostly used to prove inequalities or used to show that the maximum or
minimum value of an expression involving non-negative real numbers a,b,c is 16 Code check
failed attained when two of the variables are equal or one of the variables is zero. This requires
some knowledge about the method so by all means continue reading. Note that this method
also has a geometric interpretation.

Using the method to find the minimum/maximum in the general way is not particularly
powerful. The real power of the method comes from a general result known as Tejs’ theorem,
which is stated and proved below (yeah spoilers). Tejs’ theorem shows that under certain cir-
cumstances (which you will come to know later), the maximum or minimum of a symmetric
expression in three non-negative real variables occurs when two of the variables are equal, or
one of the variables is 0 (See the relation with Schur’s). In fact, the theorem can be used
in more complicated cases too (see the section on warning) in which more types of triples
(a,b,c) must also be checked.
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1.1.2 How to Use This Handout

This handout is by no means the best handout for the topic, and also this handout is just
to get you started. This handout has both theory, and problems. I first show you symmetric
polynomials in two variables and then in three variables.

I have tried not to give a greater importance to any one method over the other switch-
ing between both methods but the solutions are mostly using pqr. Where I use which method
has been explicitly mentioned.

I also switch between a,b,c and x,y,z due to polynomial reasons, this too has been explic-
itly mentioned. I mostly use pqr or uvw in this handout and generally use a,b,c for both of
them. The switch has also been included in the problems just to make the reader comfortable.

I suggest that you read all sections of theory and then try to solve the problems. Thus
making you more comfortable with this technique and making you faster at problem solving.
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1.1.3 My first Handout

This is my first time writing handouts like these, so please remember that I am a human and
I may make mistakes. There may be typos, grammatical errors, but I will try to be as clear
as possible.

I apologize if there are any typos, mistakes, confusing parts. This handout may be loaded
with weird, inconsistent capitalization and grammar mistakes and indenting. If you find any,
please mention them in this thread or contact me on AoPS.

I am sorry if you didn’t like this and please give me your honest feedback! I also apolo-
gize if my formatting was annoying. This is my first time with Overleaf so I did not get
everything I wanted. I may make more handouts like these in the future so your feedback
is appreciated (I currently have one in the making on Inequalities in general and a few tech-
niques).

Also sorry for making it very very long.

1.1.4 History

As far as I know, the pqr Method was originally from Vietnam, where it was known as abc
Method (i.e. abstract-concreteness method).

This method has been popularized by Michael Rozenberg (arqady). The abc Method be-
came a uvw Method, and was modified by M. Rozenberg.

1.1.5 A Word of Thanks

First of all I would like to thank Aritra12 for modifying this handout. I would also like to
thank him for his suggestions. Next I would like to thank M. Rozenberg and others who made
handouts for this method. And of course all of those people who were involved in the making
and creating of this handout.

https://artofproblemsolving.com/community/c6h2268924_pqruvw_handout
https://artofproblemsolving.com/community/user/297593
https://artofproblemsolving.com/community/user/12908
https://artofproblemsolving.com/community/user/553738
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1.2 The Basic Theory

1.2.1 Without Loss of Generality

This is a phrase commonly used in the world of inequalities. However, it must be used with
care.

Example 1.2.1. Suppose were trying to prove that a2b+ b2c+ c2a− 3 ≥ 0 when abc = 1
and a,b,c > 0. Why would it be a very bad idea to start the solution with the phrase Without
loss of generality, a ≥ b ≥ c?

Suppose we assume a ≥ b ≥ c > 0 and we have a
b +

b
c +

c
a − 3 = G(a,b,c). Then observe

that G(a,b,c)≥ 3 is a cyclic inequality, but not symmetric. Therefore, we cannot assume any
pairwise order between a,b,c, but we can assume that one of them is the minimum or maximum
for all of them. Also, it is not difficult to prove that, if a ≥ b ≥ c, then G(a,b,c)≤ G(a,c,b).
What happens when abc = 1 and you multiply the variable terms of G(a,b,c) by abc?

1.2.2 Symmetry

We call expression f (a1,a2, ,an) ≥ 0 symmetric, if its value does not change after swapping
any two variables (i.e. f (a1,a2, ,an) = f (a2,a3, ,an,a1) = . . .). Because of the symmetry, we
can rearrange the order of variables (that means we can choose an arbitrary order). Because
of the symmetry, we can estimate a mixed expression by smaller expressions of one-variable.
The fundamental intuition is being able to decide which symmetric polynomials of a given
degree are bigger. For example, for degree 3, the polynomial a3 +b3 + c3 is biggest and abc
is the smallest. Roughly, the more mixed polynomials are the smaller

1.2.3 Two variables

Theorem 1.2.1 — p,q by convenience: p = a+ b,q = ab. Obviously, a,b are roots of
the quadratic equation x2 − px+q = 0 (two of a,b can be equal or complex).

If p and q are real, then either a and b are both real or b is the complex conjugate of a.
Further (a−b) is either real or pure imaginary.
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Exercises

1. Which conditions (particularly, inequalities) should satisfy p and q for a and b to be real?

2. Prove that only if p and q are non-negative real numbers which satisfy conditions from the
previous problem then a and b are real and non-negative.
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1.3 The Method

This method is a powerful instrument which can be used for proving inequalities of varying
difficulty which cannot be proved with other methods and techniques. It should be noted at
this point that this method works for all symmetric inequalities.

Theorem 1.3.1 — If f3 is a polynomial, then it can be rewritten in terms of p,q,r by
convenience: p = a+ b+ c,q = ab+ bc+ ca,r = abc. Obviously, a,b,c are roots of the
cubic equation x3 − px2 +qx− r = 0 (two of a,b,c can be equal or complex).
The theorem can be restated as: Prove that any symmetric polynomial in a, b, c can be
expressed as a polynomial in p, q, r.

To prove this we need the following lemma:

Lemma 1.3.2 — Let sk = ak+bk+ck for any non-negative integer number k. It is possible
to express xk for k > 3 in terms of p,q,r,xk−1,xk−2 and xk−3.

Proof.
psk−1 −qsk−2 + rsk−3

=(a+b+c)(ak−1+bk−1+ck−1)−(ab+bc+ca)(ak−2+bk−2+ck−2)+abc(ak−3+bk−3+ck−3)

= (sk +abk−1 +ack−1 +bak−1 +bck−1 + cak−1 + cbk−1)

−(abk−1 +ack−1 +bak−1 +bck−1 + cak−1 + cbk−1 +abck−2 +abk−2c+ak−2bc)

+(abck−2 +abk−2c+ak−2bc) = sk

Proof of theorem. Let G(a, b, c) be a given polynomial. G = G1 +G2 +G3, where all mono-
mials in Gi contain ivariables, i = 1,2,3. From the previous theorem it follows that G1 can
be expressed as a polynomial in p,q,r. Since an equality

sksl − sk+l = akbl +akcl +bkal +bkcl + ckal + ckbl

holds, it follows that G2 can be expressed as a polynomial in p,q,r. Finally, for a sum akblcm+
something in G3 we factorize (abc)n (where n = min(k, l,m)) and reduce our problem to the
previous cases.

Theorem 1.3.3 — Given p,q,r ∈ R; a,b,c ∈ R such that p = a+ b+ c,q = ab+ bc+
ca,r = abc if and only if: p2 ≥ 3q and

r ∈

[
9pq−2p3 −2

√
(p2 −3q)3

27
,
9pq−2p3 +2

√
(p2 −3q)3

27

]

Or rmin(p,q) = (p−2
√

p2−3q)(p+
√

p2−3q)2

27 and rmax(p,q) = (p−
√

p2−3q)2(p+2
√

p2−3q)
27
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Proof: Try to prove it by yourself. You will require:

Lemma 1.3.4 — Assume that p,q, and r are real numbers. Prove that if a,b,c are real,
then

(a−b)(b− c)(c−a)

is real, otherwise it is pure imaginary.

Lemma 1.3.5 — Prove that

T (p,q,r) = (a−b)2(b− c)2(c−a)2 =−4p3r+ p2q2 +18pqr−4q3 −27r2

When making a change of variables in general, it is often quite important to understand its
inverse. In this particular case, passing from the variables a,b,c to p,q,r is relatively easy to
understand.
But suppose we are given (non-negative) values of p,q,r, to get the corresponding a,b,c is a
more important and difficult process, and some values of p,q,r may not even correspond to
real values of a,b,c.

Theorem 1.3.6 — If p,q,r ≥ 0 and T (p,q,r)≥ 0 then a,b,c are real and non-negative
Thus it can be said that if a,b,c are non-negative and p= a+b+c,q= ab+bc+ca,r = abc,
then

p
3
≥
√

q
3
≥ 3

√
r ↔ p6 ≥ 27q3 ≥ (27r)2

with equality holding if and only if a = b = c or if two of a,b,c are 0.

The theorem gives conditions that are necessary and sufficient for values of p,q,r to correspond
to real values of a,b,c. See the connection with Schur’s yet?
Hint: Proceed by contradiction - If a,b,c are not all non-negative, what do you get? Without
loss of generality assume a ≤ 0. For the converse - Cubic polynomial and discriminant.

Example 1.3.1. Let the positive real numbers x,y,z satisfy x+y+z+9xyz = 4(xy+yz+zx).
Show that x+ y+ z ≥ 1.

Let p = x+y+ z,q = xy+yz+ zx,r = xyz, thus we have to prove p ≥ 1. By Schur’s inequality
for t = 1

p3 +9r ≥ 4pq = p2 +9pr

⇒ (p−1)[p2 −9r]≥ 0

If x+ y+ z < 1, then p2 > p3 ≥ 27r > 9r contradiction. Thus p ≥ 1.



The abc Method 8

1.4 The uvw Method

The method uses the substitution 3u = a+ b+ c,3v2 = ab+ bc+ ca,w3 = abc instead of
p = a+b+c,q = ab+bc+ca,r = abc. Most of the times. But some times u = a+b+c,v2 =
ab+ bc+ ca,w3 = abc is also used, thus making it similar to the pqr method. Over here
3u = p,3v2 = q,w3 = r, and note that 3v2 can be negative for obvious reasons.

If a,b,c are non-negative and u,v,w are the substitutions in the uvw method, then u ≥ v ≥ w,
with equality holding if and only if a = b = c or (for v ≥ w) if two of a,b,c are 0.

1.5 The abc Method

The abc method uses the substitution a = x+ y+ z,b = xy+ yz+ zx,c = xyz, similar to the
pqr. This is method even though the same is relatively less well known. And thus for further
purposes we will stick with either the pqr or uvw method. (Sorry)

Exercise:

3.1. Let a,b,c be positive reals such that a+b ≥ c, b+ c ≥ a and c+a ≥ b. Prove that

2a2(b+ c)+2b2(c+a)+2c2(a+b)≥ a3 +b3 + c3 +9abc

Hint: Use the incircle substitution including the degenerate case

3.2.1. Express sk for 1 ≤ k ≤ 6 in terms of pqr. You can check your expressions in Shortcuts.
Hint: Express (a+b+ c),(a+b+ c)2,(a+b+ c)3, then can you continue?

3.2.2. Let a,b,c be real numbers such that a+ b+ c = 9, ab+ bc+ ca = 24. Prove that
16 ≥ abc ≥ 20. Prove moreover that for any r ∈ [16,20] there exist real numbers a,b,c such
that a+b+ c = 9, ab+bc+ ca = 24, abc = r.
Hint: Substitute the values in T (p,q,r).

3. Suppose a,b,c are positive real numbers such that abc = 1 and

1
a
+

1
b
+

1
c
= 1 =

1
ab

+
1
bc

+
1
ca

Find the minimum value of (a+1)(b+1)(c+1).
Hint: Clear denominators.



Qualitative estimations 9

Things to note

1.6 Symmetric polynomials

All three (i.e. pqr,uvw,abc) methods are best for symmetric polynomials of low degree and
may still require quite a lot of computation after applying Tejs’ theorem (discussed later). A
solution with any one method implies a solution with the others.

When not to use

Also, they are not always the best choice when dealing with square roots, inequalities of a
very high degree of simply non-symmetric or more than 4 variable inequalities. You probably
want to consider using another technique if this happens, but a solution is possible.

1.7 Qualitative estimations

It can be really tedious to write everything in terms of u,v2,w3.
Because of this it can be really useful to know some "qualitative estimations". We already
have some bounds on w3, but they are not always (that is, almost never) nice. The square
root tends to complicate things, so there is indeed a better way, than to use the bounds always!

If you havent noticed: Many inequalities have equality when a = b = c. Some have when
a = b,c = 0, and some again for a = b = kc for some k. There is rarely equality for instance
when a = 3,b = 2,c = 1, although it happens.

There is a perfectly good reason for this: When we fix two of u,v2,w3, then the third assumes
its maximum if and only if two of a,b,c is equal! (You will get to know why it is such in Tejs’
Theorem, go on read ahead)
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Consequences

Here are some very handy and helpful tools (but be aware that you do have to prove them
before using them unlike some theorems/properties) to ease your life while using this method.

If a,b,c are non-negative real numbers and we denote p = a+b+c,q = ab+bc+ca,r = abc,
then:

pq ≥ 9r

p2 ≥ 3q

q2 ≥ 3pr

p2q+3pr ≥ 4q2

pq2 ≥ 2p2r+3qr

p2q2 +12r2 ≥ 4p3r+ pqr

p3 ≥ 27r

q3 ≥ 27r2

p3r ≥ q3

p3 +9r ≥ 4pq

2p3 +9r ≥ 7pq

2p3 +27r ≥ 9pq

2p3 +9r2 ≥ 7pqr

q3 +9r2 ≥ 4pqr

2q3 +27r2 ≥ 9pqr

p4 +3q2 ≥ 4p2q

p4 +4q2 +6pr ≥ 5p2q

4p5q+44p2qr+17pq3 ≥ 4p4r+20p3q2 +25q2r+24pr2

Equality occurs if and only if a = b = c.

Exercise:

Prove the above inequalities.
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1.8 Tejs’ Theorem

1.8.1 p-lemma

Fix some values q = q0 and r = r0 > 0 such that there exists at least one value of p for which
the triple (p,q0,r0) is acceptable. Then p has a global maximum and minimum. p assumes
maximum and minimum only when two of a,b,c are equal.
If r0 = 0, then p ∈ [2

√
q0,∞], i.e. p is unbounded.

1.8.2 q-lemma

Fix some values p = p0 and r = r0 such that there exists at least one value of q for which
the triple (p0,q,r0) is acceptable. Then q has a global maximum and minimum. q assumes
maximum and minimum only when two of a,b,c are equal.

1.8.3 r-lemma

Fix some values p = p0 and q = q0 such that there exists at least one value of r for which
the triple (p0,q0,r) is acceptable. Then r has a global maximum and minimum. r assumes
maximum only when two of a,b,c are equal, and minimum either when two of a,b,c are equal
or when one of them are zero.

If r = 0, then one number of a,b,c equals 0. Proof (p-lemma) The condition that (p,q,r) is
admissible is T (p,q,r)≥ 0, i.e.

−4p3r+ p2q2 +18pqr−4q3 −27r2 ≥ 0

With p,q fixed, this is a quadratic polynomial in r, say f (r). The graph of f is a parabola
pointing down. If Sp,q is empty, there is nothing to prove, so assume it is nonempty.

Then we seek the set of non-negative r for which f (r) is non-negative. The set of points x
for which f (x) is non-negative is an interval [x0,x1].

Note that x1 ≥ 0 because otherwise there would be no non-negative r for which f (r) was
non-negative, so Sp,q would be empty.

There are two cases.
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Case 1.8.1. If x0 ≥ 0

The endpoints x0 and x1 are the minimum and maximum values of r, and they correspond to
the values of r for which T is zero.
But T (p,q,r) = 0 if and only if (a−b)2(b− c)2(c−a)2 = 0, which happens if and only if at
least two of a,b,c are equal.
So the maximum and minimum occur at values where two variables are equal.

Case 1.8.2. If x0 ≤ 0

The minimum value of Sp,q is r = 0. So abc = 0, so one of the variables is zero.
The maximum x1 still corresponds to two of a,b,c being the same, by the same argument as
the previous paragraph.

Example 1.8.1. Let a,b,c ≥ 0 be real numbers and a+ b+ c = ab+ bc+ ca then Prove
that

(a+b+ c)(a2b2 +b2c2 + c2a2)≤ (a2 +b2 + c2)2

Homogenize the inequality. Then p = a+b+c = ab+bc+ca = q, r = abc Then we have to
prove

p2

q
(q2 −2pr)≤ (p2 −2q)2

Thus we need to show that

2p3r− p2q2 +q(p2 −2q)2 ≥ 0

Fixing p and q. Note that the LHS of this is a linear function of r, hence the extrema are
achieved when r achieves its extrema.
Firstly, wlog assume b = c. Then the LHS becomes

ab(a−b)2(2a2 +3ab+4b2)

which is obviously non-negative.
Now wlog assume c = 0, which means p = a+b = ab = q, r = 0, and the inequality reduces
to

(a2 +b2)2 ≥ (a+b)2ab

which is obvious by AM-GM-QM.

Example 1.8.2. Let a,b,c be nonnegative real numbers such that ab+ bc+ ca = 1. Find
the minimum value of

1
a+b

+
1

b+ c
+

1
c+a
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Setting a = b = 1 and c = 0 gives 5
2 . This is infact the minimum, and thus to prove that

(b+ c)(c+a)+(a+b)(c+a)+(a+b)(b+ c)− 5
2
(a+b)(b+ c)(c+a)≥ 0

The left side is a symmetric polynomial in a,b,c of degree 3. In terms of u,v,w, it is 9u2 +
3v2 + 5

2(w
3 −9uv2), which equals

5
2

w3 +9u2 − 15
2

u+1

in our case (since 3v2 = 1).

For fixed u this is a linear polynomial in w3, which will attain its minimum value either
when w3 = 0 or when w3 is minimized subject to the admissibility constraint, which happens
when two of the variables are equal or one of the variables is zero. So it is enough to look
for the minimum value of this expression when two of the variables are equal or one of the
variables is zero.

When one of the variables is zero, without loss of generality a = 0 and bc = 1. The ex-
pression becomes 9u2 − 15

2 u+1, where 3u = b+ c, and bc = 1, so this factors as(
3u− 1

2

)
(3u−2) =

(
b+ c− 1

2

)
(b+ c−2)

But when bc = 1, clearly b+c ≥ 2 (by AM-GM), so the expression is always nonnegative, and
attains its minimum value of 0 when b = c = 1.

When two of the variables are equal, without loss of generality, a = b. Then rewriting in
terms of b,c and using the factorization of 9u2− 15

2 u+1 gives the constraint as b2+2bc = 1
and the expression as

5
2

b2c+
(

2b+ c− 1
2

)
(2b+ c−2)≥ 0

Making the substitution c = 1−b2

2b gives

−5b5 +9b4 −10b3 +10b2 −5b+1
4b2 =

(1−b)(b2 +1)(5b2 −4b+1)
4b2

and each of the three factors on top (as well as the denominator) are always nonnegative for
b ∈ [0,1].

This interval is forced by the constraint b2 +2bc = 1. Thus we are done.
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Exercise

1. Let a,b,c be non-negative real numbers such that a+b+ c = 1. Show that

1+12abc ≥ 4(ab+bc+ ca)

2. Can you similarly prove the q-lemma and r-lemma?
Hint: Cubic polynomial in q then consider then set of non-negative values of x for which
g(x) is non-negative, in this case q = 0. Do the same for r ̸= 0, but over here leading term is
negative, do a similar argument, in this case u = 0.
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Important Corollaries

Corollary 1.8.3 — Every symmetric inequality of degree ≤ 5 in non-negative real variables
a,b,c with a global minimum and/or maximum will attain this value at triples (a,b,c) with
either two of the variables equal or one of the variables equal to zero. i.e. Only to be proved
when a = b and a = 0.

Proof. Fix p,q and consider the resulting polynomial in r; it can be written as the symmetric
functions it is linear in r. Hence it is either increasing or decreasing.

So, its extrema occur when r is maximized or minimized. Thus, we only must check it
when two of a,b,c are equal or when one of them is zero. Because of symmetry we can
without loss of generality assume a = b or c = 0.

Corollary 1.8.4 — Let f be a symmetric polynomial of degree ≤ 8 in non-negative real
variables a,b,c. Write f as Ar2 +Br +C, where A,B,C are functions of p,q. Then a
global minimum and/or maximum of f , if it exists, will be attained at triples (a,b,c) with
either two of the variables equal or one of the variables equal to zero, or in the places
corresponding to solutions of 2Ar+B = 0.

Proof. Fix p,q and notice that the resulting polynomial is at most quadratic in r. So, its
extrema will occur either at points where r is maximized or minimized (i.e. at the endpoints
of the domain) or when the quadratic polynomial is at a critical point.

Such critical points correspond to places where 2Ar+B = 0, by elementary calculus. (The
point is that this equation might be easier to analyse than the original one since it has lower
degree.)

Warning

It is tempting to conclude that Tejs’ theorem shows that any inequality involving a symmetric
polynomial in three variables need only be checked when two of the variables are equal or one
of the variables is zero. This is wrong.

Example 1.8.3. Let a,b,c be non-negative real numbers with a+b+c = 12 and a2 +b2 +
c2 = 54. Find the maximum value of 102abc−a2b2c2.

Hint: Using uvw, find a polynomial by applying Tej’s Theorem say x3 + t1x2 + t2x+ t3 and
then use the range of t3.
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Suppose we check only cases where two of the variables are equal or one variable is zero.

If a = 0 we get b+ c = 12 and b2 + c2 = 54, so b+ c = 12 and bc = 45, which is impos-
sible by AM-GM. If a = b we get 2a+ c = 12 and 2a2 + c2 = 54, so 2a2 +(12−2a)2 = 54,
so 6a2 −48a+90 = 0, which factors as 6(a−3)(a−5) = 0.

This leads to the two solutions (3,3,6)(3,3,6) and (5,5,2). In the first case, abc = 54,
so 102abc− a2b2c2 = 2592, and in the second case, abc = 50, so 102abc− a2b2c2 = 2600.
So we might erroneously conclude that the minimum is 2592 and the maximum is 2600, but
this is incorrect.

In fact it is not hard to see that the possible values of abc given the constraints are in
the closed interval [50,54], by applying Tejs’ theorem, or by looking at the graph of the cubic
function y = x3 − 12x2 + 45x− d for various values of d, and concluding that it crosses the
x-axis three times if and only if d ∈ [50,54].

However, the quantity 102abc− a2b2c2 is clearly maximized when abc = 51, which occurs
at neither of the endpoints of the interval. The maximum value is therefore 2601, occurring
when a,b,c are the three real roots of the polynomial x3 −12x2 +45x−51.

This is the situation described in corollary (2) of Tejs’ theorem; the maximum of the ex-
pression 102w3 −w6 occurs either when two of the variables are equal or when the quadratic
polynomial in w3 has a critical point, i.e. −2w3 +102 = 0, or w3 = 51.

Polynomials in w3 of larger degree will have more critical points, which will be more diffi-
cult to compute and will need to be checked more carefully. (This case is extremely easy even
compared to the general degree-6 case, because the quadratic in w3 might have coefficients
involving u and v instead of just rational numbers.) This is why the uvw method is best for
symmetric polynomials of low degree.

1.9 Problems

Problem 1: For a,b,c ∈ R+ such that a+b+ c = 1, Prove that

5(a2 +b2 + c2)≤ 6(a3 +b3 + c3)+1

Problem 2: Let a,b,c be three strictly positive real numbers such that a+b+c ≥ 1
a +

1
b +

1
c .

Then show that
a+b+ c ≥ 3

a+b+ c
+

2
abc

Problem 3: Show that for whatever a,b,c > 0, we have

∑
cyc

a2 +b2

a+b
≤ 3(a2 +b2 + c2)

a+b+ c
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Problem 4: Let a,b,c > 0. Show that

1
a+b

+
1

b+ c
+

1
c+a

≤ 3(a+b+ c)
2(ab+bc+ ca)

Problem 5: Prove that for any x,y,z ≥ 0 such that x+ y+ z = 3 the following inequality
holds true

x2 + y2 + z2 + xyz ≥ 4

Problem 6: Let a,b,c be the lengths of the sides of ∆ABC. Show that

a3

b+ c−a
+

b3

c+a−b
+

c3

a+b− c
≥ a2 +b2 + c2

Problem 7: Let a,b,c∈
(
0, π

2

)
, and given that 2(tan(a)+ tan(b)+ tan(c))= 3(tan(a) · tan(b) · tan(c)) .

Show that
cos2(a)+ cos2(b)+ cos2(c)≥ 1

Problem 8: Let x, y and z be positive numbers such that x3 + y3 + z3 + xyz = 4 Prove that:

x2 + y2

x+ y
+

y2 + z2

y+ z
+

z2 + x2

z+ x
≥ 3

Problem 9: Let a,b,c ≥ 0 satisfy ab+bc+ ca = 1. Prove that

1+(ab)2

(a+b)2 +
1+(bc)2

(b+ c)2 +
1+(ca)2

(c+a)2 ≥ 5
2
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1.10 Solutions

Solution 1

Because p = a+b+ c = 1,q = ab+bc+ ca,r = abc implies that

a3 +b3 + c3 = 3abc+a2 +b2 + c2 −ab−bc− ca = 3r+ p2 −3q

So 5(a2 +b2 + c2)≤ 18r+6(p2 −2q)−6q+1

⇔ 18r+1−2q+1 ≥ 6q

⇔ 8q ≤ 2+18r

⇔ 4q ≤ 1+9r

⇔ (1−2a)(1−2b)(1−2c)≤ r

⇔ (b+ c−a)(c+a−b)(a+b− c)≤ r = abc.

That is the Schurs inequality for 1.

Solution 2

Let p = a+b+ c,q = ab+bc+ ca,r = abc.

Then by the condition we have

pr ≥ q ≥
√

3pr

so pr ≥ 3 (1)

So, by AM-GM a+b+ c ≥ 3 (2)

Example 1.10.1. Case 1. When r ≤ 1
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Then the inequality is equivalent to p · pr ≥ 3r+2p

Using (1) it suffices to prove that 3p ≥ 3r+2p or p ≥ 3r.

But by AM-GM p ≥ 3
√

r so it suffices to prove r ≤ 1 which holds .

Example 1.10.2. Case 2. r ≥ 1

So it suffices to prove that p ≥ 3
p+2

or equivalently (p−3)(p+1)≥ 0 which holds due to (2).

Solution 3

Let p = a+b+ c,q = ab+bc+ ca,r = abc

Rewriting the equation we get a2 +b2 + c2 ≥ ∑cyc
a(b2+c2)

b+c

a(b2 + c2)

b+ c
=

a((b+ c)2 −2bc)
b+ c

=
a(b+ c)2

b+ c
− 2abc

b+ c
= ab+ac− 2abc

b+ c

Thus a2 +b2 + c2 +2abc
( 1

b+c +
1

c+a +
1

a+b

)
≥ 2(ab+bc+ ca)

By Cauchy Schwartz 1
b+c +

1
c+a +

1
a+b ≥ 9

2(a+b+c)

⇔ a2 +b2 + c2 + 9abc
a+b+c ≥ 2(ab+bc+ ca)

⇔ p2 −2q+ 9r
p ≥ 2q

⇔ p3 +9r ≥ 4pq which is just Schurs.

Solution 4

If p = a+b+ c,q = ab+bc+ ca,r = abc then

3(a+b+ c)
2(ab+bc+ ca)

−∑
cyc

1
a+b

=
3p
2q

−
∑cyc(a2 +ab+bc+ ca)
(a+b)(b+ c)(c+a)

=
3p
2q

− p2 +q
pq− r

=
3p2q−3pr−2p2q−2q2

2p(pq− r)
=

2q
3 (p2 −3q)+ p

3 (pq−9r)
2(pq− r)

≥ 0
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Which is true in accordance with p2 ≥ 3q and pq ≥ 9r

Solution 5

We want to get all our terms to have degree 3 (since that is the highest degree of an already
present term).

So

(x2 + y2 + z2) · x+ y+ z
3

+ xyz ≥ 4
(

x+ y+ z
3

)3

Writing in terms of pqr we get

p
3
(p2 −2q)+ r ≥ 4p3

27

⇔ 9p(p2 −2q)+27r ≥ 4p3

⇔ 9p3 −18pq+26r ≥ 4p3

⇔ 5p3 +27r ≥ 18pq

Now p3 +9r ≥ 4pq → 3p3 +27r ≥ 12pq and p2 ≥ 3q → 2p3 ≥ 6pq.

Adding both we are done.

Solution 6

Let p be the semiperimeter i.e. p = a+b+c
2

Let a = y+ z,b = z+ x,c = x+ y.

Thus, we have

∑
cyc

a3

b+ c−a
= ∑

cyc

(y+ z)3

2x

=
∑cyc yz[y3 + z3 +3yz(p− x)]

2r
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=
(x3 + y3 + z3)(xy+ yz+ zx)− xyz(x2 + y2 + z2)+3p(x2y2 + y2z2z2x2)−3r(xy+ yz+ zx)

2r

=
3qr+ p3q−3pq2 − p2r+2qr+3pq2 −6p2r−3qr

2r

=
p3q−7p2r+2qr

2r

so, the inequality is successively equivalent to

p3q−7p2r+2qr
2r

≥ ∑
cyc

(y+ z)2

⇔ p3q−7p2r+2pq ≥ 4r(p2 −q)⇔ p3q+6qr ≥ 11p2r

⇔ q(p3 +9r−4pq)+
11p

3
(q2 −3pr)+

q
3
(pq−9r)≥ 0

which is true using q2 ≥ 3pr, pr ≥ 9r and p3 +9r ≥ 4pq.

Solution 7

Note x = tana, y = tanb, z = tanc.

And a,b,c ∈
(
0, π

2

)
so we have x,y,z ≥ 0.

The result is cos2 a = 1
1+x2 , cos2 b = 1

1+y2 , cos2 c = 1
1+z2

So
cos2 a+ cos2 b+ cos2 c−1

=
1

1+ x2 +
1

1+ y2 +
1

1+ z2 −1

=
3+2(x2 + y2 + z2)+(x2y2 + y2z2 + z2x2)

1+(x2 + y2 + z2)+(x2y2 + y2z2 + z2x2)+(xyz)2)
−1

=
2+(x2 + y2 + z2)− (xyz)2

(1+ x2)(1+ y2)(1+ z2)

But note that
2+(x2 + y2 + z2)− (xyz)2

= 2+ p2 −2q− r2
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= p2 −2q+
3r
p
− 4

9
p2

=
1

9p
(5p3 +27r−18pq)

=
2
9
(p2 −3q)+

1
3p

(p3 +9r−4pq)≥ 0

And because p2 ≥ 3q and p3 + 9r ≥ 4pq, of where cos2 a+ cos2 b+ cos2 c ≥ 1 and equal-
ity holds for x = y = z =

√
2.

Solution 8:

Write inequality as

x2 + y2

x+ y
+

y2 + z2

y+ z
+

z2 + x2

z+ x
> 3

3

√
x3 + y3 + z3 + xyz

4
.

Suppose p= x+y+z= 3, q= xy+yz+zx = 3−3t2 (06 t < 1) and r = abc inequality become

2p2q−4pr−2q2

pq− r
> 3

3

√
p3 −3pq+4r

4
,

equivalent to
36−12r−18t2(t2 +1)

9(1− t2)− r
> 3 3

√
r+

27
4

t2,

or

4− 6(1− t2)(4− t2)

9(1− t2)− r
> 3

√
r+

27
4

t2.

Because r 6 (1+2t)(1− t)2, so

4− 6(1− t2)(4− t2)

9(1− t2)− r
> 4− 6(1− t2)(4− t2)

9(1− t2)− (1+2t)(1− t)2 =
3t2 + t +2

t +2
,

and
r+

27
4

t2 6 (1+2t)(1− t)2 +
27
4

t2 = 2t3 +
15
4

t2 +1.

Therefore we need to show that

3t2 + t +2
t +2

> 3

√
2t3 +

15
4

t2 +1.

Which is true because(
3t2 + t +2

t +2

)3

−
(

2t3 +
15
4

t2 +1
)
=

(4t2 +5t +6)(5t −2)2t2

4(t +2)3 > 0.
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Solution 9:

Let p = a+b+ c,q = ab+bc+ ca = 1,r = abc

This is equivalent to

(ab)2 +q2

q(a+b)2 +
(bc)2 +q2

q(b+ c)2 +
(ca)2 +q2

q(c+a)2 − 7(a−b)2(b− c)2(c−a)2

2(a+b)2(b+ c)2(c+a)2 −
5
2
≥ 0

⇔ f (r) = (p2 +96q)r2 +14pq(p2 −4q)r+q2(p2 −4q)2 ≥ 0

If p2 ≥ 4q then we are done

If p2 ≤ 4q then

f ′(r) =
2
9
(p2 +96q)(p3 −4pq+9r)− 2

9
p(p2 +33q)(p2 −4q)≥ 0

Assume p = 1 because (a−b)2(b− c)2(c−a)2 ≥ 0.

Thus
r ≥ 1

27
(−2p3 −2

√
(p2 −3q)3 +9pq) =

1
27

(−2−2
√
(1−3q)3 +9q)

Therefore

f ′(r) = (1+96q)r2 +14q(1−4q)r+q2(1−4q)2 ≥ f (
1

27
(−2−2

√
(1−3q)3 +9q))≥ 0

Can you continue?

Takeaway from the solutions

• If you thought that there is always a solution using only this method (i.e. no other
method will be needed) then you were wrong but the method does simplify the problem
which makes using other methods to solve the simplified problem very easy.

• If you look back at the solutions you will see that some of the solution include other
methods (such as AM-GM or Cauchy Schwarz, ex: Problem 2 or Problem 3) to prove
the question. This is highly possible.
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• You should try to get all the terms to the highest degree of an already present term
(Problem 5). That will allow you to use the method more neatly.

• You may set up your own conventions (such as p= a+b+c
2 , ex: Problem 7) but remember

what you set, and change the Consequences accordingly

• These solutions may not be the most elegant and sometimes contain dirty calculation
(such as expanding but these have not been included so it is suggested that the reader
does so) but the power of this method is unimaginable.
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Conditions

Some inequalities contain conditions like a,b,c ≥ 1, and it is not correct to use pqr Method
in this case.

Numbers a,b,c to be not less than 1

Solution: We need a,b,c are real, so p,q,r must be real and T (p,q,r) ≥ 0 must hold. We
should use non-negativity lemma for numbers (a−1),(b−1),(c−1).

(a−1)+(b−1)+(c−1)≥ 0 ⇔ p ≥ 3

(a−1)(b−1)+(b−1)(c−1)+(c−1)(a−1)≥ 0 ⇔ q−2p+3 ≥ 0

(a−1)(b−1)(c−1)≥ 0 ⇔ r−q+ p−1 ≥ 0

Exercise:

Find conditions on numbers p,q,r necessary and sufficient for

1. Numbers a,b,c to be side lengths of a triangle (perhaps degenerate).

2. Non-negative real numbers a,b,c to satisfy 2 ·min(a,b,c)≥ max(a,b,c)
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Exercises for the reader

Problem 1:

If a,b,c > 0 and a,b,c ∈ R then show that

∑
cyc

1
a2 +ab+b2 ≥

(
3

a+b+ c

)2

Problem 2:

Let a,b,c > 0, with a+b+ c = 1. Show that

1
a+b

+
1

b+ c
+

1
c+a

+3(ab+bc+ ca)≥ 11
2

Problem 3:

Consider a,b,c three strictly positive real numbers. Show that

∑
cyc

b+ c
a

≥ 3+
(a2 +b2 + c2)(ab+bc+ ca)

abc(a+b+ c)

Problem 4:

If a,b,c > 0 and a,b,c ∈ R with a+b+ c = 1. Show that

a3 +b3 + c3 ≥ a2 +b2 + c2

3
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Problem 5:

Let x,y,z > 0 and x,y,z ∈ R with x+ y+ z = 3. Show that

2(x3 + y3 + z3)≥ x2 + y2 + z2 +3

Problem 6:

Let x,y,z ∈ (0,∞) such that x2 + y2 + z2 +1 = 2(xy+ yz+ zx). Show that

9xyz ≥ x+ y+ z

Problem 7:

Let x,y,z ≥ 0 be such that xy+ yz+ zx = 3. Show that

4xyz(x+ y+ z)−3xyz ≤ 9

Problem 8:

Let a,b,c ∈
(
0, π

2

)
, and given that 2(tan(a)+ tan(b)+ tan(c)) = 3(tan(a) · tan(b) · tan(c)).

Find the minimum value of the expression

1
sin2a

+
1

sin2b
+

1
sin2c

Problem 9:

Let x,y,z > 0 and x,y,z ∈ R with the property that xy+ yz+ zx = 3. Show that

3xyz(x+ y+ z)−2xyz ≤ 7
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Problem 10:

There exist a,b,c > 0 such that abc = 1. Then prove the inequality that

∑
cyc

a+b
c

≥ 2∑
cyc

(a+
1
a
−1)

Problem 11:

If a,b,c ∈ R+ with a+b+ c = 1. Show that

(a2 +b2)(b2 + c2)(c2 +a2)≥ 8(a2b2 +b2c2 + c2a2)2

Problem 12:

Let a,b,c > 0 and a,b,c ∈ R such that a+b+ c = 3. Show that

abc+
12

ab+bc+ ca
≥ 5

Problem 13:

When a,b,c > 0 and ab+bc+ ca = 3 prove that

3+
1
2 ∑

cyc
(a−b)2 ≥ ∑

cyc

a+b2c2

b+ c

Problem 14:

When a,b,c > 0 and a+b+ c = 3 find the minimum of

(3+2a2)(3+2b2)(3+2c2)
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Problem 15:

Let a,b,c be positive real numbers such that a2 +b2 + c2 = 3. Prove that

∑
cyc

a2 +3b2

a+3b
≥ 3
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Problems from Contests

Iran TST 1996

For a,b,c positive real numbers prove that

(ab+bc+ ca)(
1

(a+b)2 +
1

(b+ c)2 +
1

(c+a)2 )≥
9
4

Solution

The desired inequality can be written as

4qpr+q(p4 −2p2q+q2)

(pq− r)2 ≥ 9
4

Fix p and q. Since r ≤ pq, it follows that left hand side attains its minimal value when r
attains either maximal or minimal value. If a = 0, then the desired inequality can be written
as

(b− c)2(b2 +bc+ c2)

2bc(b+ c)2 ≥ 0

Equality is attained when a = 0,b = c.
If a = b, then the desired inequality can be written as t(t −1)2 ≥ 0, where t = c

b . Equality is
attained when a = b = c.

China Western Mathematical Olympiad 2006

Suppose that a, b, c are positive real numbers, prove that

1 <
a√

a2 +b2
+

b√
b2 + c2

+
c√

c2 +a2
≤ 3

√
2

2
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Solution

Rewrite the original inequality as follows:

1 ≤ 1√
1+ b2

a2

+
1√

1+ c2

b2

+
1√

1+ a2

c2

≤ 3
√

2
2

By change of variable let x =
√

1+ b2

a2 ,y=
√

1+ c2

b2 ,z=
√

1+ a2

c2 The inequality then becomes

1 ≤ 1
x
+

1
y
+

1
z
≤ 3

√
2

2

The conditions can be rewritten as:

x,y,z ≥ 1 ⇔ p−3 ≥ 0,q−2p+3 ≥ 0,r−q+ p−1 ≥ 0

India TST 2017

Let a,b,c be distinct positive real numbers with abc = 1. Prove that

∑
cyc

a6

(a−b)(a− c)
> 15

Solution

Due to the conditions a+b+ c > 3, and using standard pqr notation we can easily find that

S = ∑
cyc

a6

(a−b)(a− c)
= p2(p2 −3q)+2pr+q2,

Then S = p2(p2−3q)+2pr+q2 > 2pr+q2 = 2abc(a+b+c)+(ab+bc+ca)2 > 6+9 = 15.

USAMO 2001

Let a,b,c ≥ 0 and satisfy
a2 +b2 + c2 +abc = 4.

Show that
0 ≤ ab+bc+ ca−abc ≤ 2.
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Solution

Put x = p = a+b+ c,y = p2 −2q = a2 +b2 + c2,z = r = abc.

a,b,c are real, if T (x,y,z) = T (x, x2−y
2 ,z) ≥ 0. It is also clear that if T (x,y,z) = 0, then

two variables from a,b,c are equal.The non-negativity theorem is rewritten as follows:

p ≥ 0 ⇔ x ≥ 0,q ≥ 0 ⇔ x2 − y ≥ 0,r ≥ 0 ⇔ z ≥ 0

The condition a2+b2+c2+abc= 4 is rewritten as y+z= 4. Inequality ab+bc+ca−abc≥ 2
can be rewritten as x2−y−2z ≤ 4.Let us fix y and z. It is enough to check the inequality for
the maximum x (max - a singular x exists since x ≤ 3(a2 +b2 + c2)≤ 12).

In the respective, the triple a,b,c two variables are equal. Substituting a = b into the
original inequality, we obtain the correct inequality. Equality cases: a = b = c = 1 and
a = b =

√
2,c = 0.

JBMO SL 2019

Show that for any positive real numbers a,b,c such that a+b+c= ab+bc+ca, the following
inequality holds

3+
3

√
a3 +1

2
+

3

√
b3 +1

2
+

3

√
c3 +1

2
≤ 2(a+b+ c)

Solution

Since f (x) = 3
√

x is concave for x ≥ 0, by Jensens Inequality we have

∑
cyc

3

√
a3 +1

2
≤ 3

√
a3 +b3 + c3 +3

6

So it is enough to prove that

3

√
a3 +b3 + c3 +3

6
≤ 2(a+b+ c)−3

3

Now writing in pqr notation we get p = a+ b+ c = ab+ bc+ ca = q,r = abc Note that
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p2 ≥ 3q = 3p =⇒ p ≥ 3.
Thus it is enough to show that

p3 −3p2 +3r+3
6

≤ (2p−3)3

27

After expanding, this is equivalent to

7p3 −45p2 +108p−27r−81 ≥ 0

But we know that p3 ≥ 27r, so it is enough to prove that

6p3 −45p2 +108p−81 = 3(p−3)2(2p−3)≥ 0

which is evident as p ≥ 3.
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Problems from Contests for the Reader

Poland 1991

Let a,b,c be positive reals with a2 +b2 + c2 = 2.Prove the inequality

a+b+ c ≤ 2+abc

Stronger: Let a, b, c be reals such that a2 +b2 + c2 = 1.Prove that

a+b+ c−2abc ≤
√

2−5a2b2c2.

Romania JBMO TST 2009

Let a,b,c > 0 be real numbers with the sum equal to 3. Show that:

a+3
3a+bc

+
b+3

3b+ ca
+

c+3
3c+ab

≥ 3

APMO 2004

Prove that the inequality(
a2 +2

)(
b2 +2

)(
c2 +2

)
≥ 9(ab+bc+ ca)

holds for all positive reals a, b, c.

IMO SL 2011

Let a,b and c be positive real numbers satisfying min(a+b,b+c,c+a)>
√

2 and a2 +b2 +
c2 = 3. Prove that

a
(b+ c−a)2 +

b
(c+a−b)2 +

c
(a+b− c)2 ≥ 3

(abc)2 .
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Korea 2012

a,b,c are positive numbers such that a2 +b2 + c2 = 2abc+1. Find the maximum value of

(a−2bc)(b−2ca)(c−2ab)

Russia 2015

Positive real numbers a,b,c satisfy

2a3b+2b3c+2c3a = a2b2 +b2c2 + c2a2.

Prove that
2ab(a−b)2 +2bc(b− c)2 +2ca(c−a)2 ≥ (ab+bc+ ca)2.
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1.11 Alternative forms of Schurs Inequality

Assuming a,b,c ≥ 0 we have the following results:

at(a−b)(a− c)+bt(b− c)(b−a)+ ct(c−a)(c−b)≥ 0

Result 1

t = 0 we have a2 +b2 + c2 ≥ ab+bc+ ca

Result 2

t = 1 expanded we get a3 +b3 + c3 +3abc ≥ a2b+b2c+ c2a+ab2 +bc2 + ca2

Result 3

t = 1 expanded we get abc ≥ (−a+b+ c)(a−b+ c)(a+b− c)

Result 4

t = 1 expanded we get

(a+b+ c)2 +
9abc

a+b+ c
≥ 4(ab+bc+ ca)

Result 5

t = 2 expanded we get

a4 +b4 + c4 +abc(a+b+ c)≥ a3b+b3c+ c3a+ab3 +bc3 + ca3



Alternative forms of Schurs Inequality 37

Result 6

Schurs inequality of 3rd degree is equivalent with

a
b+ c

+
b

c+a
+

c
a+b

+
4abc

(a+b)(b+ c)(c+a)
≥ 2

Result 7

Schurs inequality of 4th degree can be rewritten into

(a+b+ c)(a3 +b3 + c3 +3abc)≥ 2(a2 +b2 + c2)(ab+bc+ ca)

Result 8

For a,b,c > 0 and abc = 1 we have

(a−1)
(

1
b
−1

)
+(b−1)

(
1
c
−1

)
+(c−1)

(
1
a
−1

)
≥ 0

(Let a = x
y etc, then this is Schurs inequality of 0th degree).

Result 9

3rd degree
(a2 +b2 + c2)(a+b+ c)+9abc ≥ 2(a+b+ c)(ab+bc+ ca)

Result 10

Weaker form of Result 4

a2 +b2 + c2 +2abc+1 ≥ 2(ab+bc+ ca)
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Result 11

Stronger than 3rd degree, equivalent with 4th degree

a3 +b3 + c3 +3abc ≥ ∑bc(b+ c)+
bc(b− c)2 + ca(c−a)2 +ab(a−b)2

a+b+ c

Result 12

4th degree

a2 +b2 + c2 +
6abc(a+b+ c)

a2 +b2 + c2 +ab+bc+ ca
≥ 2(ab+bc+ ca)

Result 13

(
a

b+ c

)2

+

(
b

c+a

)2

+

(
c

a+b

)2

+
10abc

(a+b)(b+ c)(c+a)
≥ 2

Result 14

Stronger than Schur of 3rd degree, but weaker than 5th degree

a2 +b2 + c2

ab+bc+ ca
+

8abc
(a+b)(b+ c)(c+a)

≥ 2

Result 15

Schur of 5th degree

a2 +b2 + c2 +
6abc

a+b+ c
+

abc(a+b+ c)
a2 +b2 + c2 ≥ 2(ab+bc+ ca)
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Eulers inequality

R ≥ 2r where R,and r are the circumradius and inradius respectively, this expressed in sides
a,b,c we get

abc√
(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c)

≥
√

(−a+b+ c)(a−b+ c)(a+b− c)
a+b+ c

which if rewritten is Result 3.

Gerretsens Inequality

If s,r,R denotes the semiperimeter, inradius and circumradius of a triangle, then

16Rr−5r2 ≤ s2 ≤ 4R2 +4Rr+ r2
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Shortcuts

One important thing to note is that all of the summations below are cyclic.

∑x = p

∑x2 = p2 −2q

∑x3 = p3 −3pq+3r

∑x4 = p4 −4p2q+4pr+2q2

∑x5 = p5 −5p3q+5p2r+5pq2 +5qr

∑x6 = p6 −6p4q+6p3r+9p2q2 −2q3 −12pqr+3r2

∑xy = q

∑(xy)2 = q2 −2pr

∑(xy)3 = q3 −3pqr+3r2

∑(xy)4 = q4 −4pq2r+2p2r2 +4qr2

∑(xy)5 = q5 −5pq3r+5p2qr2 +5q2r2 −5pr3

∑(x2y+ xy2) = pq−3r

∑(x3y+ xy3) = p2q−2q2 − pr

∑(x4y+ xy4) = p3q−3pq2 − p2r+5qr

∑(x5y+ xy5) = p4q− p3r−4p2q2 +7pqr+2q3 −3r2

∑x2yz = pr

∑x3yz = p2r−2qr

∑x4yz = p3r−3pqr+3r2

∑x2y2z = q2r−2pr2

∑(x3y2z+ x3yz2) = pqr−3r2

∑(x3y2 + x2y3) = pq2 −2p2r−qr
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∑(x4y2 + x2y4) = p2q2 −2q3 −2p3r+4pqr−3r2

∑(x4y3 + x3y4) = pq3 −3p2qr+5pr2 −q2r

∑(x+ y)(y+ z) = p2 +q

∑(1+ x)(1+ y) = 2p+q+3

∑(1+ x)2(1+ y)2 = 2p2 +2pq−2pr+q2 +4q−6r+3

∑(x+ y)2(y+ z)2 = p4 − p2q+q2 −4pr

∑(x2 + xy+ y2)(y2 + yz+ z2) = p4 −3p2q+3q2

∏(x+ y) = pq− r

∏(1+ x) = 1+ p+q+ r

∏(1+ x2) = p2 +q2 + r2 −2pr−2q+1

∏(1+ x3) = p3 +q3 + r3 −3pqr−3pq−3r2 +3r+1

∏(x2 + xy+ y2) = p2q2 −3q3 − p3r

∏(x2y+ y2z+ z2x)(xy2 + yz2 + zx2) = p3r+9r2 −6pqr+q3

(x3y+ y3z+ z3x)(xy3 + yz3 + zx3) = p5r−5p3qr+ pq2r+7p2r2 +q4

∏(x− y)2 =−4p3r+ p2q2 +18pqr−4q3 −27r2

∑(x2y− x2z) =−(x− y)(y− z)(z− x)

∑(x3y− x3z) =−p(x− y)(y− z)(z− x)

∑(x4y− x4z) =−(p2 +q)(x− y)(y− z)(z− x)

∑(x5y− x5z) =−(p3 −2pq+ r)(x− y)(y− z)(z− x)

∑(x3y2 − x2z3) =−q(x− y)(y− z)(z− x)

∑(x4y2 − x2z4) =−(pq− r)(x− y)(y− z)(z− x)
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